Reductive biotransformation of Fe in shaleâ•filimestonesaprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates

نویسندگان

  • Ravi K. Kukkadapu
  • John M. Zachara
  • James K. Fredrickson
  • James P. McKinley
  • David W. Kennedy
  • Steven C. Smith
  • Hailiang Dong
چکیده

A <2.0-mm fraction of a mineralogically complex subsurface sediment containing goethite and Fe(II)/Fe(III) phyllosilicates was incubated with Shewanella putrefaciens (strain CN32) and lactate at circumneutral pH under anoxic conditions to investigate electron acceptor preference and the nature of the resulting biogenic Fe(II) fraction. Anthraquinone-2,6-disulfonate (AQDS), an electron shuttle, was included in select treatments to enhance bioreduction and subsequent biomineralization. The sediment was highly aggregated and contained two distinct clast populations: (i) a highly weathered one with ‘‘sponge-like’’ internal porosity, large mineral crystallites, and Fecontaining micas, and (ii) a dense, compact one with fine-textured Fe-containing illite and nano-sized goethite, as revealed by various forms of electron microscopic analyses. Approximately 10–15% of the Fe(III)TOT was bioreduced by CN32 over 60 d in media without AQDS, whereas 24% and 35% of the Fe(III)TOT was bioreduced by CN32 after 40 and 95 d in media with AQDS. Little or no Fe , Mn, Si, Al, and Mg were evident in aqueous filtrates after reductive incubation. Mössbauer measurements on the bioreduced sediments indicated that both goethite and phyllosilicate Fe(III) were partly reduced without bacterial preference. Goethite was more extensively reduced in the presence of AQDS whereas phyllosilicate Fe(III) reduction was not influenced by AQDS. Biogenic Fe(II) resulting from phyllosilicate Fe(III) reduction remained in a layer-silicate environment that displayed enhanced solubility in weak acid. The mineralogic nature of the goethite biotransformation product was not determined. Chemical and cryogenic Mössbauer measurements, however, indicated that the transformation product was not siderite, green rust, magnetite, Fe(OH)2, or Fe(II) adsorbed on phyllosilicate or bacterial surfaces. Several lines of evidence suggested that biogenic Fe(II) existed as surface associated phase on the residual goethite, and/or as a Fe(II)–Al coprecipitate. Sediment aggregation and mineral physical and/or chemical factors were demonstrated to play a major role on the nature and location of the biotransformation reaction and its products. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heterogeneous reduction of Tc(VII) by Fe(II) at the solid–water interface

Experiments were performed herein to investigate the rates and products of heterogeneous reduction of Tc(VII) by Fe(II) adsorbed to hematite and goethite, and by Fe(II) associated with a dithionite–citrate–bicarbonate (DCB) reduced natural phyllosilicate mixture [structural, ion-exchangeable, and edge-complexed Fe(II)] containing vermiculite, illite, and muscovite. The heterogeneous reduction o...

متن کامل

Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.

Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of sy...

متن کامل

Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01.

This work studied the ability of Comamonas koreensis CY01 to reduce Fe(III) (hydr)oxides by coupling the oxidation of electron donors and the enhanced biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by the presence of Fe(III) (hydr)oxides. The experimental results suggested that strain CY01 can utilize ferrihydrite, goethite, lepidocrocite or hematite as the terminal electron acceptor ...

متن کامل

Potential for Microscale Bacterial Fe Redox Cycling at the Aerobic-Anaerobic Interface

Recent studies of bacterial Fe(II) oxidation at circumneutral pH by a newly-isolated lithotrophic β-Proteobacterium (strain TW2) are reviewed in relation to a conceptual model that accounts for the influence of biogenic Fe(III)-binding ligands on patterns of Fe(II) oxidation and Fe(III) oxide deposition in opposing gradients of Fe(II) and O2. The conceptual model envisions complexation of Fe(II...

متن کامل

Effect of oxidation rate and Fe(II) state on microbial nitrate-dependent Fe(III) mineral formation.

A nitrate-dependent Fe(II)-oxidizing bacterium was isolated and used to evaluate whether Fe(II) chemical form or oxidation rate had an effect on the mineralogy of biogenic Fe(III) (hydr)oxides resulting from nitrate-dependent Fe(II) oxidation. The isolate (designated FW33AN) had 99% 16S rRNA sequence similarity to Klebsiella oxytoca. FW33AN produced Fe(III) (hydr)oxides by oxidation of soluble ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017